Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions
نویسندگان
چکیده
In this paper we propose a machine learning approach to classify melanocytic lesions as malignant or benign, using dermoscopic images. The lesion features used in the classification framework are inspired on border, texture, color and structures used in popular dermoscopy algorithms performed by clinicians by visual inspection. The main weakness of dermoscopy algorithms is the selection of a set of weights and thresholds, that appear not to be robust or independent of population. The use of machine learning techniques allows to overcome this issue. The proposed method is designed and tested on an image database composed of 655 images of melanocytic lesions: 544 benign lesions and 111 malignant melanoma. After an image pre-processing stage that includes hair removal filtering, each image is automatically segmented using well known image segmentation algorithms. Then, each lesion is characterized by a feature vector that contains shape, color and texture information, as well as local and global parameters. The detection of particular dermoscopic patterns associated with melanoma is also addressed, and its inclusion in the classification framework is discussed. The learning and classification stage is performed using AdaBoost with C4.5 decision trees. For the automatically segmented database, classification delivered a specificity of 77% for a sensitivity of 90%. The same classification procedure applied to images manually segmented by an experienced dermatologist yielded a specificity of 85% for a sensitivity of 90%. 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Non-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملDetection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions.
BACKGROUND AND OBJECTIVE Several systems for the diagnosis of melanoma from images of naevi obtained under controlled conditions have demonstrated comparable efficiency with dermatologists. However, their robustness to analyze daily routine images was sometimes questionable. The purpose of this work is to investigate to what extent the automatic melanoma diagnosis may be achieved from the analy...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملClassification of the Pigmented Skin lesions in Dermoscopic Images by Shape Features Extraction
ifferentiation of benign and malignant (melanoma) of the pigmented skin lesions is difficult even for the dermatologists thus in this paper a new analysis of the dermatoscopic images have been proposed. Segmentation, feature extraction and classification are the major steps of images analysis. In Segmentation step we use an improved FFCM based segmentation method (our previous work) to achieve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 32 شماره
صفحات -
تاریخ انتشار 2011